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Vhe problem considered is the free vibrations of a thin rod of constant 
cross-section with centerline describing a circle and which carries equal 
and equidistant masses. It is assumed that the vibrations of the rod con- 
sist of flexural vibrations in the plane of its centerline and vibrations 
accompanied by displacements perpendicular to the plane of the axis and 
bg torsion. A solution is obtained for both types of vibration in the 
case where it is possible to consider that the centerline of the rod is 
inextensible, the portions of the ring between the masses are inertialess 
and the rotational inertia of the masses is neglected. The problem is of 
interest for the Investigation of vibration in a number of machine ele- 
ments, in particular, the frames of certain types of centrifugal mills, 
the stators of electrical machines, turbine disks with massive rings [ll, 
and so forth. An approximate solution for vibrations perpendicular to the 
plane of the ring was given in [ll. 

1. With the above-mentioned assumptions, in the case of flexural 

vibrations in the plane of the ring. the tangential displacement v(8) of 
a point on the centerline and its first three derivatives are continuous, 
but the fourth and fifth derivatives have discontinuities at the points 
where the masses are located, i.e. at 8 = ka; the magnitudes of the jumps 
in the derivatives are found from the well-known relations between the 
shear forces acting on the cross-section of the rod and the displacements 
of the points on its centerline 

MKP d 
~v(ka+O)--d$v(ka--) =r-- d,j v VW 

MPRS 
-$; v (ka + 0) - d$ V (ka - 0) = - F v (ka) 

(k=O, l,...,n-i) (1.1) 
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Here k is the number of the mass, fJ is the central angle between the 
current point on the centerline and the m8ss with number zero, f[ = B/n 
is the central angle between successive masses, n is the number of masses, 
h is the frequency of vibration, M is the magnitude of the attached mass, 
EI is tha corresponding flexural rigidity, and R is the radius of the 
circle formed by the centerline. 

The segments of the ring between the m8sses are assumed to be tnertia- 
less, hence for fk - l)~r < 8 < ka (k = 0, . . . , n - 1) the displacement 

v(8) satisfies the equation [21 

$+2$&g&o WI 

The general inteRra of this equation in the interval (k - l)a< B<kcx 
we taka in the form 

where 

(0) 
'k = 0 @a), D (ka - 0) (r=f,...,5) (1.4) 

The fuunctfons @,(6) forar a fundamental sgstem of so1utions of equation 
(1.2) with 8 unitsry matrix. 

After differentiating the integral (1.31, substituting 8 = (A - 1)a 

into it and replacing the values of the fourth and fifth derivatives of 
v(8) after the (k - 11th mass by their values before this mass in accord- 
8nce with the conditions (1.1). we obttlin the totality of recurrence 
formulas 
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MRS A’ 
B= BI # Qstr) (a) = $ fDa (a) (F, S = 0, . . . ,5). 

The formulas (1.6) are a system of six linear homogeneous ;Clpations of 
first order in the finite differences of the SfX functions Vk of a 
discrete argument of the number k of the mass. 

For solution of the system (1.6) it is expedient to eliminate from it 
the variables ukC3), Vk(4) and vk(‘); we determine them by the displace- 
ments u(8) and their first two derivatives at the (k - l)th, kth and 
(k + 1)th junction points; this is accomplished by use of the first three 
equations of system (1.6) and their counterparts for the kth and (k + 1)th 
junction points 

vk$; = i o~@)UJ~(~) (a) + p [@,1(‘) (a) vk(l) - QCr) (a) ,k(O)] (F = 6, 1, 2) (1.7: 
.¶=l 

As a result we obtain 

v*(3) Z 

-@6 [("k$;'- "k$))- p(uyvp - cD6"Uk'O')]} 

“k 
(4) - - 1_ [“k$ - 2Qfz%k(2) + Yk_l-Y - p (aW+*) -@&@‘)J 

2% 

*;a) =L 2 (@&$” 1_ @II(I)bt (-- @3@ [(Ok$$ - v*< -2uW,(9-- p (u&Q@ - ~~U~)~~ + 

+ a39 [vk+r (2) - VkLY - p (@/Vk(l)-- cD,“u,co))]) (1.X) 

Here and in the following, the argument of all functions @,(r = 0, 

. . . , 5) will be the angle a, and the prime denotes differentiation with 
respect to a. 

The same three equations of the system (1.6) together with relations 
(1.7) and (1.8) lead to still another group of recurrence formulas which 
connect the tangential displacement and its first two derivatives at 
three adjacent junction points of the rod 
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The system (1.9) of three finite-difference equations of second order 

in the quantities vk(‘), vk(‘) and vkt2) is equivalent to the system 

(1.6). 

After sufficient cumbersome manipulations and reduction on the factor 

l/p a sin a (l/d a3 - l/dasinaa+acosa-a++ina-sin aces a) 

by which the characteristic polynomials of the systems (1.6) and (1.9) 

are distinguished, the characteristic equation of the system (1.9) may be 

put in the form 

e6q + 1 - [4 cos a + 2 - 3 (a + a cos a - 2 sin a)] (esq + eq) + 

+[4cos8a+8cosa+3+3(4sina+4sinacosa-2a-6acosa)f 

+ 6% (l/d a* + r/a aE cos a - s/z a sin a - 2cos a + 1/d cos* a + 7/r)] (e4q + ezq) - 

-[[8cos2a+8cosa+4-_(6a+2acosa+4acos~a-4sina-Ssinacosa)- 

- /3x(2a sin a + a sin a cos a + 3 co@ a - l/z sin2 a - 4 cos a -s/2as + I)] e3q = 0 (1.10) 

From the condition of periodicity of the solution of the difference 
eqhations 

(r = 0, 1, . . . ) 5) (1.11) 

it follows that the characteristic equation (1.10) must have roots of 

the form 

&mi 
eq=expy=e ami (i* = - 1, a is any integer) (1.12) 

Substitution of (1.12) into (1.10) leads to a quadratic equation for 

the calculation of all the frequencies of free vibration for any number 

of masses 

372 cos ma (1/a aa + 1/z a2 cos a - S/a a sin a - 2 cos a + */* cosZa + ‘lb)- 

-s9/~a2+2asina+asinacosa-4cosa+3cos~a--’/~sin2a+1]+ 

+~[2cos2ma(a+acosa-22ina)+2cosma(4sinacosa+ 

$-4sina-6acosa-2a)+6a+2acosa+4acosxa-4sina- 

8sinacosa]+[2cos3ma-2cos2ma(4cosa+2)+2cos~na(4cos~a+8cosa+3)- 

- 8 cos* a - 8 cos a - 41 = 0 (1.13) 

It should be noted that in view of the high degree of symmetry of the 

system, the number of different values of the frequency determined from 

the frequency equation (1.13) is less than 2n - the number of its degrees 
of freedom; moreover, one and the same frequency corresponds to two 

linearly independent forms of the tangential displacement of the mass 
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f1.14) 

(1) The corresponding forms of tbe radial displacement of the mass vk,,, , 
and also the shapes of the rod may be constructed in accordance with 
relations (1.9), (I.&), (1.3) and (1.1). 

Expansion of the frequency equation fl. 13) in a power series in 0: 

p IPh2 
(O.@C”..) + El 

-[(nza+1)36+..*] - [n~(m2-l)~c@+...]=O 

(@ -i nM/ZnR} (1.15) 

shows that if the number of masses is increased without bound, while the 
sum of the masses remains a constant, then one root of the frequency equa- 
tion for our system approaches the value of the corresponding frequency 
of vibration of a ring of density p, whereas the other root increases 
without bound; this unbounded growth is explained by the fact that the 
condition of inextensibility of the centerline of the ring with an un- 
limited increase in the number of Basses is equivalent to the imposition 
of some absolutely rigid constraint, It is important that the frequency 
of the latter type may not be found by such an approximate method as was 
used, for example, in [II. 

2. Be consider vibration accompanied by displacements perpendfcular 
to the plane of the centerline of the rod and by torsfon. 

TI<e deflection IQ(@) for vibrations of this type satisfies the differ- 
ential equation containing delta functions 6(e) 

6fe-k@- (2.1) 

Here EIl is the corresponding flexural rigidity, and GI its the 
torsional rigidity of the rod. 

The general integral of equatton (2. lf for @ = kor reduces to a re- 
currence forzeula for determination of the deflection rp(kcx) of a point at 
a mass 

6 d’w(-0) k 

w (ka) = 22 de' 
@,e @a) + p 2 {@a, [@ - i) a] - 2@6 [@ - i) &I) W (i@) (2.2) 

I=0 j==O 

where 
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Formula (2.2) is equivalent to the corresponding finite-difference 
equations and also allows the determination of the deflection of the kth 
mass as a function of its number. If the function 

w (2) = 5 w (ka) Zk (2.3) 
k=O 

is known, then for the calculation of the quantity w(ka) it is sufficient 
to know the derivatives of W(z) for z = 0. After multiplication by zk 

and summation, formula (2.2) gives 

5 dPW(-0) 
(1 - P Pa* (4 - v-h’ WI) w (4 = 2 de’ a/ (4 

r=o 

where 

ar* (z) = 2 mr (ka) zk 
k=o 

The function W(z) defined by (2.4) 
and may be represented in the form 

is a rational fract 

ii 

w (‘I = Q tit p) r=O -2 d’w (- 0) 

d@ pr (4 

where P,(z) and Q(z, p) are polynomials in z, and W(z) is 

(r=O,l . . . ,5). (2.5) 

ional function 

(2.4) 

(2.6) 

regular at in- 
finity; the values of its derivatives for z = 0 may be determined by the 

corresponding expansion according to the roots of the polynomial Q(z, p). 

From the condition of periodicity 

w (0) = w (na) (2.7i 

it follows that the polynomial Q(z. p) must have roots of the form 

2rCmi 
z=expn=e ami 

The equality 

Q (earni, p) = 0 (2.9) 

after certain transformations reduces to an explicit expression for the 
frequency of free vibration 

AS = Mj&$ 4 (cos ma - 1) (cos ma - cos a)* : [2 (2- r) a (cos ma - cos a)* + 

+ (1 - 7) a (cos mu - 1) (cos a cos ma - 1) - (5 - 3r) sin a (cos mu - 1) (cos ma - co9 a)) 
(2.10) 

For vibrations of the type considered, as well as in the case of 
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vibrations in the plane of the centerline of the rod, one frequency 

serves for two linearly independent modes of vibration of the form (1.14); 

the number of values of the frequency determined from (2.10) for differ- 

ent m is as before less than n - the number of degrees of freedom of the 

system. 

BIBLIOGRAPHY 

1. Birger, I. A. , Kolebaniia kol’tsa s prisoedinennymi massami (Vibra- 

tions of a ring with attached masses). Inzh. sb., Vol. 24, 1956. 

2. Love, A., Mathematical Theory of Elasticity. (Russian translation). 

ONTI. 1935. 

Translated by F. A.L. 


